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Summary. An alternative method for the evaluation of matrix elements required in 
an LCAO-SCF calculation is presented. It is based on the use of solutions of the 
Helmholtz equation within a spherical domain for expanding charge distributions 
with boundary conditions devised to make the electrostatic-potential integral 
particularly simple. This method allows the systematic evaluation of bielectronic 
integrals to be performed for any type of atomic orbitals. 
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1 Introduction 

The appropriate choice of basis functions to solve SCF equations within the LCAO 
approach must take care of the following facts: (a) the rate of convergence of 
molecular orbitals [1]; (b) the difficulty in computing monoelectronic and bielec- 
tronic integrals, (c) the implementation of analytical gradients, and (d) the correct 
molecular behaviour both near the nuclei and in the long range region. Points (b) 
and (c) are of the greatest importance for the prediction of molecular geometries 
and nuclear vibrations 1-2] and they are relatively well taken into account with the 
use of Gaussian-type orbitals (GTOs). However, in most cases it is necessary to 
include a large number of GTOs in order to satisfy conditions a) and d) properly. 
On the other hand, calculations using exponential-type orbitals (ETOs) (hydrogen- 
like, Slater, etc.) [3] give appropriate results with respect to points (a) and (d) [4]. 
Unfortunately, in this case the evaluation of the required multicenter integrals 
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is so difficult that it precludes the existence of general program facilities. However, 
important research work has been carried out in this direction [5-20]. 

In the present work an algorithm to compute matrix elements of an LCAO 
calculation is proposed which could in principle be implemented with any type of 
sufficiently fast decaying atomic orbitals (ETOs, GTOs, etc., see Appendix I). This 
algorithm takes advantage of the fact that due to the exponential decay of AOs, the 
evaluation of any matrix element involved in an LCAO calculation can be reduced 
to an integration within a sphere of a suitably chosen radius a, neglecting the 
contribution from the region outside the sphere. It can be shown that the error 
involved in that truncation of the space decays exponentially with increasing a. To 
carry out the integration within the sphere, atomic orbital products * Z~ Xj are 
expanded in terms of an appropriate basis set defined in this work, having special 
properties with respect to the operator I r -  r'[ -1. In this way, Coulomb-type 
bielectronic integrals can be straightforwardly computed. That is, the sixfold 
integral is shown to be reduced to a numerical series in terms of just the expansion 
coefficients of the "charge distributions" * Z~ Zj. An upper bound to the error due to 
the truncation of the series can be explicitly found. 

The basis set functions are built up as solutions of the Helmholtz equation, with 
appropriate boundary conditions so that they satisfy special integral properties 
with respect to the operator [r - r'[-1. 

Following the ideas of Shavitt et al. [6] and using well known properties of 
spherical harmonics and Bessel functions, the calculation of the necessary expan- 
sion coefficients is shown to lead to a finite sum of one-dimensional integrals. When 
GTOs are used, a further and important simplification is achieved. It is interesting 
to remark that there are other methods in the literature that could be implemented 
alternatively to evaluate these coefficients [5-20]. 

A method devised on these grounds would essentially scale like N 2 times 
n (where N is the number of basis functions) for an N-orbital molecular problem 
([12] p. 120), provided the charge distributions expansions can be truncated after 
n terms. This number can be estimated by finding an upper bound to the truncation 
error considering unfavourable cases. 

2 Method 

2.1 Construction of the basis set 

First, a set of functions Uq(r) are defined within a spherical domain of radius a, having 
special properties with respect to the operator I r - r'l-1 restricted to that sphere. 

Let U~(r) be solutions of the Helmholtz equation: 

V 2 Uq(r) = - k~ Uq(r), (1) 

where q = (n, l, m) stands for a set of indices. If it is assumed that {Uq(r)) represent 
sources in the Poisson equation inside a sphere of radius a [21], then: 

L j , '<a  I r Z ~ l  = 0 if J r ] > a .  

For kq ¢ 0, it follows from Eqs. (1) and (2) that the function: 

Dq(r) = (1/4rt) ( dV' Uq(r') Uq(r) (3) 
J r ' < a  I r - -  r r l  k 2  ' 
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which is continuously differentiable up to second order for rrl ~< a (see Ref. [22] 
p. 596 and Ref. [23] p. A-105), satisfies the Laplace equation ([22] p. 596) in the 
region I r I < a: 

V2Da(r) = 0 ({r[ < a). (4) 

For those values of kq which satisfy the condition: 

Oq(r) l , :o  = 0 (5) 

it follows from the Laplace equation, Eq. (4), and the boundary condition, Eq. (5), 
that ([23] p. A-105): 

Dq(r) = 0 for Irl < a ,  (6) 

which means that the following property is satisfied by Uq(r): 

fr ty~(t.') 
Uq(t.) = (k2/4r0 ' < a  HV" It. - t.'l for Irl < a.  (7) 

This integral property, Eq. (7), shows that integrals of the operator It. - t.']-1 can 
be performed in a straightforward way in terms of the functions Uq(r) within the 
sphere of radius a. 

The next step is to prove that a basis of the Hilbert space of functions within the 
sphere can be built up with the set {Uq(t.)}, and to determine explicitly their 
functional form. 

Separation of variables in the Helmholtz equation in spherical coordinates 
yields: 

Utm,(t.) = B,nR,.(r) Ylm(~-~), (8) 

Bln is a normalization constant, Ytm(Q) is a spherical harmonic (the phase conven- 
tion of Condon and Shortley [243 is used in this work) and the functions Rtn(r) are 
spherical Bessel functions ([25] p. 437): 

Ro,(r) = r-  1/2 Jt+ 1/2 (ko, r) = (2k1,,/rQ'/2jt(ktnr), (9) 

(where the requirement of regularity at r = 0 has been included in order to rule out 
the Neumann functions [22]). 

Once proper boundary conditions are imposed at t. = a, a discrete set of 
functions {Rtn(r), n = 1 . . . .  } for each value of I is obtained, whose properties in the 
interval (0, a) must be investigated. In this case, the boundary condition at r = a is 
the one imposed in Eq. (5) for Eq. (7) to hold, i.e., 

k 2 f Uq(t.') dV'  
Uq(Y)Ir=a = ~ jr' <a -(-r ~ "ffTT r=a" (10) 

On making use of the expansion of the operator It" - F]-  x in terms of spherical 
harmonics within the region [r'l < I r ' l  --  a, 

Ir - r'17-_1~ = (4re/a) ~ (r'/a) l Yl*(O, ~o) Ylm(O', q)') (11) 
l=O m=-l 

as well as Eq. (8), by orthonormality properties of spherical harmonics, the 
boundary condition at r = a for R~n(r) obtained from Eq. (10) is 

k2 fa Rl,,(a) = (2/+ 1)a z+l o drrl+2Rtn(r)" (12) 
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Considering Eq. (9), the variables changes x = kz, r, y = k~,a and setting 
v = 1 + 1/2, Eq. (12) transforms into: 

dx xV+ l J,(x). (13) J r ( Y )  = o 

The following two properties of Bessel functions can be used to simplify Eq. (13) 
([25] p. 361): 

d [x~+ 1 xV+*J~(x)=-~x J~+,(x)] Vv (14) 

xJ~(x) + va~(x) = xav_,(x) Vv (15) 

yielding the explicit form for the boundary condition at r = a: 

kt, a 'at-  1/2 (kt.a) = 0. (16) 

The solutions of this equation yield a discrete set of values of {k~,}, from which the 
orthogonal ([27] p. 264) set {jz(kz, r), n = 1 , . . .  } can be constructed for each I. The 
k,, = 0 value (which is a solution of Eq. (16)) is excluded because the corresponding 
"eigenfunct ion"/+ 1/2 is not orthogonal to Jl+ 1/2 (kz,r) for any kl, :~ 0 (see Eqs. (13) 
and (16)) ([23] p. 762). Using Eq. (15), Eq. (16) can be rewritten as 

(kz, a)J;(kl, a) + vJv(kz.a) = O. (17) 

This boundary condition has the form required in Ref. [26] p. 580 to define a Dini 
expansion. Convergence properties of the Dini expansion of any continuous 
function f(r) in [0,a] are well known from the literature ([26] p. 602). The .  
expansion uniformly converges in [6, a - 6] with 6 arbitrarily small. 

Following Smirnov ([28] p. 127), it is possible to demonstrate that the basis 
{ Uq(r)} is complete. As a consequence of the finiteness of ([22] p. 271): 

f ,  dV' 
F(r) = ' <a l r -  r'l 2 gr < a, (18) 

it follows immediately ([28] p. 130) that the integral linear self-conjugate operator 
I defined as 

1 fr dV'q~(r') 
I(~0) = ~nn ,<, ~-~r-~ r < a (19) 

is "completely continuous" ([28] p. 121). It is also bounded ([28] p. 115), as can be 
seen from 

= 1 
1lI(~°)l]2 (4n)2f.<adVIf,,<.dV'q)(r')~2lr- r'[ J 

1 £ [ ~  dV' £ ~o2(r,)dV, ] 
~<(-~)2 <a dV ,<. i rCT,  i 2 ,<. 

l I ~  £ dV' 1 = ~ <a d V ,<~ Ir---r'12 • II II 2 = g "  II II 2 (20) 

where use has been made of the Cauchy-Schwarz inequality and N is a constant 
independent of ¢p. 
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These two properties of the operator/(i .e,  complete continuity and bounded- 
ness) are sufficient to ensure that the corresponding eigenfunctions (i.e. the func- 
tions {Uq(r)} of Eq. (7)) form a complete orthogonal basis of L2(r < a) ([28] p. 127 
and p. 135), i.e., 

fr'<a O~(r)* Oq,(r) -~. 6qq, dV (21) 

and any function ~b(r) s L2(r < a) can be expanded as 

with coefficients: 

~)(r) = Z Clmn Olmn(r)' (22)  
Iron 

¢ 
clm. = 1 c~(r) U~m,(r) dV, (23) 

Jr <a 

where the convergence is in the mean. 
By construction, every Uq(r) satisfies Eq. (7). Its importance lies in the following 

fact. If U*(r) and Uq,(r') are thought of as charge distributions, the Coulomb 
interaction between them can be evaluated as 

f, fU*(r) Uq,(r') 4~ <a '<a ~----~[ dV dV' : ~q 3qq, (24) 

Therefore, the Coulomb interaction between any two charge distributions pl(r) 
and P2 (r) within the sphere can be straightforwardly expressed in terms of their 
Fourier-type coefficients. 

The usefulness of these properties to evaluate matrix elements of an LCAO- 
SCF calculation is discussed in the following section. 

2.2 Evaluation of matrix elements 

To evaluate matrix elements of an LCAO-SCF calculation, consider a basis set of 
AOs {gi(r)} centered on arbitrary positions. The functions zi(r) can be real or 
complex, exponential-type orbitals (ETOs) or Gaussian-type orbitals (GTOs). The 
calculation of each matrix element requires an integration extended to the whole 
space of charge distribution products z*(r)zj(r) involving at most two centers. 
These charge distribution products can be expanded in terms of the functions 
defined in the previous section, provided a convenient choice of the a parameter 
(i.e. the radius of the sphere) can be made in order to ensure that the sphere encloses 
the region of the space where Z* (r)gj(r) is significant. This is always possible due to 
the exponential decay of AOs. On the other hand, the error involved can be made 
arbitrarily small by choosing a sufficiently large value of a. Details of this statement 
are given in Appendix I. Thus, 

l 

~( /*(r )~j ( r )  = 2 C~ j Uq(r) = ~ ~, 2 ClJmn Olmn(r), ( 25 )  
q n = l  l=O m= - l  

where 

C~ j = f <. dV z*(r)zj(r)U*(r)" (26) 
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Since Ut*... = ( - 1)ca Ul-m.([33] p. 185), the following relation holds: 

ij cji* (27) Clean = ( -- 1) m l-can" 

Once all coefficients C~ are determined for all products Z* (r)Li(r), the evalu- 
ation of matrix elements is straightforward. Thus, bielectronic integrals can be 
approximately calculated as follows: 

f d V d V' Z* (r) zj(r) Z* (r') Zs (r') (U I r s )  

f d V d V '  z*(r)zj(r)z*(r')zs(r') 
jr ,r'<a [r--r'l  

i i l c ' J  i* s 
= 4re ~ -lea. Ct,,. (28) 

n = l  l = O  ea=  - l  kl 2 

by virtue of Eq. (24). In practical applications, however, the series must be 
truncated at given values I = L and n = N. An upper bound to the error involved in 
this truncation is given explicitly in Appendix IIa. Further use of these bounds 
allows the convergence properties to be analysed. 

The overlap integral Sij = S d V ~* Zj can be approximated as 

SlJ = X. C"J fr <a dV Uq(r) 

= ~. cti~. d~? Ylea(~) drr2Bl.Rl.(r) 
lean 0 fo 
= 2 CIr. (4r0 ~/2 6eaogho(2/r~ko.) ~/2 B~. dr r" sin (ko,,r) 

lean .10 

= Z CiJm" (4rQ1/26eao6to(2/nko.) all 
lrnn 

f 
a 

x 21/z [aJl+ 1/2 (kt.a) ] - a dr r" sin (ko.r) 
0 

= ~ Clea.C~eaOC~loiJ (47tl/2/[(2a)a/Zk2]), (29) 
lean 

where, the angular part of the integral renders 6m0610, the expression of the 
normalization factor Bl. is taken into account and the radial part has been 
evaluated explicitly. 

The monoelectronic part of the LCAO-SCF calculation [29]: 

Z N  (3o) 

gives matrix elements which can be easily computed, except for the kinetic 
energy part that requires special treatment. However, when hydrogen-like 
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atomic orbitals are used, from Eq. (7), the following closed expression is 
obtained: 

hij=fdVz*(r)[eJ+(~J/Ir--RNjI)--~"(ZN/Ir--RNI)IZJ(r)N 

= ajSij + 4g~j Y Ciqj Uq(RNj) 

7 
4rc~ZNC~JUq (RN) 

k2 " , (31) 

where ej and ~j are respectively the energy and orbital exponent associated to the 
hydrogen-like AO )~j(r), N is the nucleus where the AO is centered and RN is the 
position vector of nucleus N. 

2.3 Calculation of the expansion coefficients 
ij 

Direct evaluation of the coefficients Ctm. from Eq. (22) requires some rather 
involved analysis. Thus, it is convenient to extend the integration interval to 
infinity. Even though this introduces a further source of error, it allows the 
powerful methods already extensively investigated in the literature to be explicitly 
applied to the present problem. 

It is always possible to express the coefficients cli~, as follows: 

C l m  n : dVz*(r)zj(r) U ~ . ( r )  

=- f~<~odVz*(r)zj(r)U~,(v)- fr> dVz*(r))~j(r)U~,(v) (32) 

f l 9 ~  ij 
"61~nn - -  81ran, 

where the AOs Zi, Zj can be centered on different nuclei. 
By using a similar argument to that outlined in Appendix I, it can be proved 

0 that the error e~m, decreases exponentially when a increases. 
ij Of all possible alternative methods for the calculation of cgzm ., the one of 

Shavitt et al. [6] can be considered particularly useful. 
Thus, firstly, it is necessary to obtain the integrals corresponding to two Slater 

type ls orbitals on different centers located at A and B (if they are located on the 
same center an analytical expression can be obtained quite straightforwardly along 
similar lines). 

The coefficients are denoted by u ~gtm,, where I = lSA and J = lsB. General 
coefficients corresponding to the 2s, 2p , . . .  orbitals can similarly be generated 

~s by applying the following operators to CgZm,, such as described in Ref. [6]: 

#Ai' 

dl = (33) 



154 J .E.  Prrez et al. 

This fact is easy to show taking into account  tha t  orbitals distinct f rom Is  ones can 
be expressed as 

^ 

rnae -~ra : ( --  1)n+l D n [ e  -~rA] (34) 

(ri - Ai)" e - ' rA = d~i  [(ri --  A i )  n -  1 e -  ~rA] 

+ ( - 1)"+l(n -- 1)all ,  [(r, -- A/) " -2  e -~ ' a ] ,  (35) 

where i =  x,y ,z ,  ra = I r -  A I and n/> 2. Thus,  the remaining coefficients can 
be obta ined  as linear combinat ions  of part ial  derivatives of Cg[mS with respect to the 
Slater exponents  c~ and/~, and the  cartesian componen t s  of A and B. 

Numer ica l  evaluat ion of ~s Cgtm, can be reduced to tha t  of  a one-dimensional  
integral as follows. On writing u (~lmn as 

= N A N  B ~ d V e x p (  - ~r A - f l r B ) U * n ( r )  (36) 
j r  < o 0  

using the integral representat ion [6] 

exp(  - era -- ~rB) = (e~/4~) ds dt(st)-3/2 
o o 

x exp{ - (c~2/4s) - (~2/4t) - sr~ - try} 

= (cq?/4~) ds dt (st)- 3/2 exp { - (~2/4s) - (~2/4t)} 
o o 

x e x p {  -- (s + t)lr -- PI 2 - (st/s + t)lA - BI2},  (37) 

where P = (sA + tB)/(s + t); in conjunct ion with the expansion ([30] p. 227): 

exp (6 cos y) = (rc/26) 1/2 ~ (2l + 1) Pz (cos 7) lz + 1/2 (6), (38) 
t = o  

(where 3 = 2(s + t)Pr and ? is the angle between P and r, and I~+1/2(6) are the 
modified Bessel functions of  fractional order  ([31] p. 967)), as well as the following 
identi ty ([31] p. 718): 

oo dr (yr) ( c~r 2 l Jt+l/2(~Sy/2cOexp(f14~T2 ) (39) f o r Jr + 1/2 It + 1/2 fir) exp ( - ) = 

and the addit ion theorem for spherical harmonics ,  the integrat ion over all spatial 
variables can be carried out. 

In  order  to per form the integrat ion over  s and t, the following change of 
variables is useful [6]: 

u = s/(s + t) 

V = S + t ,  

I J  thus leading to the following expression for the %m,: 

fo; I J  %.,. = NANBC~3 (~/16) m du dvv -7/2 [u(1 - u)] -3/2. 
o 

x U*m. (P )exp (  - k~./4v)exp[ - ~2/4uv 

- 32/4(1 - u)v - u(u - 1)IA - BI2] .  (40) 
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The integration over v yields 

Cg[mJ, = NaNB (8rc)~/zcq?lA- BI 5 duu(u - 1) U?m,(P)Ks/2(z)z -5/2, (41) 
do 

where z = ([A - Bl)[k~,u(1 - u) + (1 - u)~ 2 + uflZ] 1/2, P = uA + (1 - u)B and 
Ks/z(Z ) is the modified Bessel function of degree 5/2 ([25] p. 444). Thus, the 
evaluation of xs Cgtm . has been reduced to a one-dimensional integral. 

When gaussian-type orbitals are used, a similar scheme can be followed [32] to 
generate the remaining coefficients starting from OK[mS,: 

~lm, = N a N . B I ,  drr  3/2 df2exp( - c~r~ - fir2)Y~(f2) Jl+l/2(kl, r). (42) 
0 

In this particular case, the method outlined above leads to an analytical closed 
form for this coefficient: 

~s f ~ ~3/2 
(~lm. = NaNBBtn \ ~ - ~ )  p -  t/2 y .  (Op) jt+ l/z(kt, p)" 

x exp [ -  [~fl/(~ + fl)]lA - B ]  z - [k~Z./4(a + fl)J], (43) 

where it has been used that a product of GTOs can always be expressed as a GTO 
centered on another point P = (~A + fiB)/(~ + fl). 

2.4 Connection between the present approach and the Fourier-transform 
method 

The present approach is closely related to the Fourier transform method [15]. To 
prove this equivalence, the parameter a is allowed to go to infinity in the bielec- 
tronic integral expression: 

(B,./k,.) { f r d V  pl (r )  J t + ~ k z ' r )  y*m(Q) B=4 y Fy  2 2 
1 m n < a  r 

× ;r' < a dVt p2(Y') Jl+ l/2(klnr') y~m(~2) } q- t 1[2 (44) 

e(a) is the error discussed in Appendix I and thus e(a) ~ 0 as a ~ oo and B~, is the 
normalization factor in Eq. (8). 

An appropriate limiting procedure such as described in Ref. [27] p. 264 allows 
the sum over n to be transformed into the following integral over the continuous 
parameter k: 

B = 47z~ d k k  -1 a v p l t r )  Y*,,(f~) 
Im 0 r 

X fV r' dV' p2(r') Jl+l/2(krt) 1/2 . (45) 

The expression for the bielectronic integral in the Fourier transform method [15] is 

5 c B = (1/27t 2) d3k k -2 d V p l  (r)e -i~.r.  dV' p/(r ' )  e ik'r' (46) 
o r dVr' 
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From this expression, Eq. (45) is obtained if each e ik'r factor is replaced by its 
expansion in spherical Bessel functions and the integration over the angular 
variables in the {k} domain is carried out explicitly. 

An alternative procedure to show the connection between both methods is by 
letting the spatial integrals in Eq. (46) be truncated to the domain r < a (for 
example, by use of the approximation pi(r) ~ p~(r)O(a - r)). Then the following 
equality holds: 

B ~ (1/2rc 2) dSkk -2 d V p l ( r ) e  - i k . , .  dV,  p2(r,)eik.~' 
0 < a  d r t < a  

= 47t'~ ~ k/n2 f r l m  n=l <a dgPl(r) U~fmn(r)fr'<a dg'P2(r')Ulmn(r')" (47) 

This relation can be obtained by introducing the expansion of e -  it~.¢ in terms of 
the basis { U.tm(r)} within the domain r < a: 

where 

e - i~-e = ~ A .z .~ (k )  U.~, . (r)  r < a ,  (48) 
h i m 

Anlm(k) = I d V e  - ik ' r  U'ira(r). (49) 
dr < a  

Introducing Eq. (48) and Eq. (49) in the left-hand side of Eq. (47), the integration 
over k can be carried out explicitly, as outlined in Appendix III, and the right-hand 
side of Eq. (47) is obtained. From this point of view, the present method is seen to 
be based on the same grounds as the Fourier transform one, with a discrete 
k parameter. Discretization of k is shown to be a direct consequence of the fact that 
the distributions p~(r) take negligible values for r > a. 

3 Concluding remarks 

In this work it has been shown that a discrete basis set of functions can be defined 
within a finite spherical domain of radius a which has special properties with 
respect to the operator ]r - r 'l-1. Taking advantage of this feature a method to 
compute LCAO-SCF matrix elements can be implemented. As discussed in the 
previous sections, the calculation of such matrix elements is shown to be reduced to 
the evaluation of the expansion coefficients Ct'~, of AOs products * Z~ Zj in terms of 
the basis set functions { U~,,, } defined in this paper, thus requiring the computation 
of only three-dimensional integrals, Eq. (26). It is worth noting that once all 
coefficients have been computed, monoelectronic as well as bielectronic Coulomb- 
type integrals are straightforwardly expressed in terms of such coefficients, inde- ij pendently of the number of atomic centers involved. The evaluation of C~m, 
requires to deal at most with three-center integrals. Although finding the most 
efficient technique of evaluating such coefficients is up to now a matter of research, 
in this work a particular method is presented in which the required evaluation is 
reduced to a one-dimensional numerical integral for STOs, and analytical expres- 
sions are obtained for GTOs. However, other possibilities can be envisioned. All of 
them can be implemented if the parameter a is allowed to go to infinity in the actual 
calculation of the coefficients, as outlined in Sect. 2.3. 
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For instance, using Eq. (7), the coefficients can be expressed as 

Clan = (k/2.)/4rO dV' d i~-~7 ] [ U,m,(r') (50) 

The quantity in brackets can be expanded using the schemes developed either in 
Refs. [7] and [8], or the ones in Refs. [10, 20, 35]. 

It must be emphasized that the approaches mentioned above do not have any 
restriction on the l, m, n atomic orbitals indices involved in the calculation. Despite 
the rather intrinsic computational problems which could arise, this fact ensures 
the flexibility of this method; thus allowing to deal with orbitals of arbitrary 
1 (s, p, d , f . . .  ). Further, this approach can be applied regardless of the AOs 
functional form, and thus could be implemented with other choices of AOs, as for 
instance those proposed in Ref. [35]. 

An important point to be discussed is the choice of the parameter a, i.e, the 
radius of the sphere. In principle, this parameter should be taken so that the whole 
molecule is included within the sphere. As shown in Appendix I, an analysis can be 
carried out in order to make the error due to this truncation of the space as small as 
desired. However, in actual applications to extended systems, this criterion may 
become unpractical. In such cases a different approach could be adopted• A dis- 
tance d can always be defined such that bielectronic integrals involving centers that 
lie at a distance larger than d yield negligibly small values [36], and thus they can 
be systematically neglected in the calculations. If d is smaller than the dimensions of 
the system under study, then the value of d can be chosen to be the radius of the 
sphere. In this case, several spheres could be defined on different atomic centers in 
order to evaluate those bielectronic integrals which involve those atoms that lie at 
a distance smaller than d from that particular center• An approximate value of 
bielectronic integrals between AOs of atoms which lie out of the sphere and those 
within it could nevertheless be obtained following the multipole expansion tech- 
nique [19]. These integrals would be expressed in terms of both the multipole 
moments of the distributions Z*)~j lying out of the sphere as well as the expansion 
coefficients of the distribution )~* Z,, which lies within the sphere. 

It should be mentioned that an analysis of the errors due to the truncation of 
the space and of the series expansion can be carried out. In Appendix I the error 
due to the truncation of the space is explicitly discussed. The error in the bielec- 
tronic integrals must take into account that the actual calculations are carried out 

• i j  with the approximate Cg~m, coefficients. In Appendix IIb this problem is analysed in 
some detail. The bounds to the error obtained in that section have the following 
properties: they are expressed as finite sums, i.e., their evaluation requires the same 
information as that used for the evaluation of the bielectronic integrals, in addition 
to the integrals Tij. Such results are a direct consequence of the completeness of the 
basis set and its integral property, Eq. (24). 

The rate of convergence of the series expansion involving the ff]~n coefficients is 
a subject that can only be explicitly analysed in practical applications. However, 
from the expression of those coefficients obtained for is Slater atomic orbitals, 
Eq. (41), such analysis can be carried out in detail. This is done in Appendix IIc. 
A deeper analysis for other type of atomic orbitals can be performed in a similar 
way as that outlined in Ref. [15]. Expressions (41) and (43) are well suited to 
analyse the asymptotic behaviour of the coefficients in terms of the l, m, n indices. 

Another point worth of mentioning is that the evaluation of the integrals 
discussed in the present work do not require to locally reproduce the charge 
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distribution products at each point in space in an adjusted way, as the interest is 
centered on integral properties. The rate of convergence of the sums found in 
Appendix IIc for the case of ls Slater atomic orbitals centered at any point within 
the sphere supports this assertion. This feature of the present approach can be 
related to the good convergence properties of the Dini expansions. However, for 
more complicated charge distributions a deeper analysis is needed. 

To end up, it is important to point out that the methods described in Section 2.3 
for evaluating the coefficients [6, 32] make explicit use of partial derivatives of the 
coefficients with respect to atomic positions, thus allowing analytic gradients to 
be directly implemented in order to perform geometry optimizations within the 
present approach. 

Appendix I 

Consider for instance the bielectronic integral: 

(ijlrs)=fdgfdV, Z*(r)z~(r)z*(r')ZAr') ~;_--~ , (al)  

where the AOs ~i, Z j, Xr, ~s are centered on different nuclei in the most general case. 
The integration can be performed by partitioning the whole space as 

( i j l rs )  = d V  d g '  El (r)Z~(r)Xr (r )Xs(r ) 
< .  , < .  Ir ' -  rl 

+ f,  <. dV f, ,>. dV' zg (r)zi(r)~i~*(r')zs(r')lr, -- r[ 

+ d V  d V '  
>, ,<~ I r ' -  rl 

= d V  d V '  Xi ( r ) z j ( r )Xr  ( r ) Z s ( r  ) 

<, .<, Ir' - rl ~- ~1 + e2. 

(a2) 

Hence, el and ez represent the errors in the calculation of (i j lrs)  when the integra- 
tion is restricted to the region inside the sphere of radius a. It can be demonstrated 
that both ea and e2 decrease exponentially with increasing a. It is done here 
explicitly for el using the less favourable case of ETOs (a similar demonstration 
holds for e2). 

Each AO product can be expressed as 

z * ( r ) z ~ ( r )  = P ( r  - R A ) Q ( r  - R , )  

x e x p [ -  a i r -  RAI -  f l l r -  RsI], (a3) 

where P ( r  - R a )  and Q(r - R e )  represent polynomials centered on RA and Re, the 
nuclei positions, respectively. By means of the triangle inequality, the AOs product 
can be upper bounded as 

N 

lz*(r)zAr)l ~< ~ A~r" exp [ - ct(r - RA) -- fl(r -- Re)], (a4) 
n = l  
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where A, are the absolute values of the coefficients in the expansion of the product 
of polynomials P and Q and the absolute values of the components of r have been 
upper bounded by r. Thus for el: 

1~1 [ ~</r <. d v, z* (r) z,(r)l £.>°dV' 

~ A.r'" exp [ - e(r' - RA) -- fl(r' -- RB)] 
x (a5) 

n=l I t ' - - r [  

Using the well-known spherical harmonics expansion of I r ' - r  I-l, integration 
over the angular variables of d V' leads to 

I~11 ~< (4/1;) 1/2 dglz*(r)xj(r)l dr' 
< a  a 

N 

x ~ A ,r  '"+1 e x p [ -  e(r ' - -RA) --fl(r '--RB)], (a6) 
n = l  

which finally results: 

1~11 ~< (4r@/2 dglz*(r)zj(r)l 2 ~ 7 - ~ - ~ - 2  
< a  n = l  m = O  

x exp[ - ~(a - R A ) -  fl(a -- RB)] <~ (4TC)3/2~ Max(l)~*(r))~j(r)l) 

x R(a). exp [ - a(a - Ra) - fl(a - RB)], (a7) 

where R (a) is a polynomial of known degree evaluated on a and it is assumed that 
the maximum of the function lies inside the sphere. A similar demonstration can be 
performed for any matrix element. 

Appendix II 

(a) Estimate of the error in the bielectronic integrals due to the truncation 
of the series expansion 

An upper bound to the error E due to the truncation of the series Eq. (28) to 
evaluate bielectronic integrals can be found as follows: 

""Imn ~.-'lmn t-'Iron "-'lmn ( a 8 )  
[ E ] = 4 n  -£- + E E k~, " 

l = L + l  m = - l n = l  k ln  l = O m = - l n = N + l  

Since {Us(r)} form an orthonormal basis set of a Hilbert space, the Cauchy 
inequality holds [34] and it can be used to set an upper bound to I E I. Defining: 

Rjl = 4~ kt" + 4re E E k,. (a9) 
/ = L + I  m = - l  n = l  l = O  m = - l  n = N + l  

the upper bound can be expressed as 

R 1/2" R 1/2 (al0) I E l ~ - - j i  ~-va • 
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In the following, an upper bound to Rji is considered. The roots of the Bessel 
functions satisfy: 

ko,u+l < kz. Vn > N + 1, Vl 

kL+l,1 < ktn Vn, Vl > L + 1 (all)  

These properties can be used to extract the factors kz. from the sums, setting an 
upper bound to its value, i.e., 

- -  "~-" lmn l "l- Z ] C lfimn 
Rji <~ (kL+l,1) 2 l=L+l ,,=-t .=1 (ko, N+l) z t m=-t .=N+I 

<~ 4 n  (kL+~,  1) 2 + ( k o , ; +  1) 2 l=L+ 1 m=Z-I n= 1 I"~tmnl 

rJ~ 12 (a12) + Z  Z • 
l=O m = - I  n=N + l 

In the last step a very convenient expression is obtained since it involves only the 
expansion coefficients in the sums. It can be directly related to the charge distribu- 
tion product Z* Zj. Using the relation: 

Z [ rj'~z,..,'a = dV Izjx*la'~ dV IX,Z*[ z - Tii (a13) 
/ = 0  m = - l  n = l  < a  < 

and splitting the sum, the last inequality can be expressed as 

t"iJ 12 Z [ x'~lmnl "~ Z Z [[",ij 12 ( a 1 4 )  "~lmn I ~ Tj i  - -  t j i ,  
/ = L + I  m = - I n = l  l = 0  m = - I n = N + l  

where tji is given by 
L l N 

/ = 0  m = - l  n= l 

Inserting inequalities (a12), (a13), and (a14) valid for both charge distributions in 
Eq. (al0), the following upper bound to the error E is found: 

IEI ~< 47z - 2 q- - -  ( T j i -  t .At/2 (Tpq - tpq) 1/2 (a16) 
( k L + l , 1 )  ( k o , N + l )  2 J "  • 

Using the well-known properties of the roots of Bessel functions ([25] p. 371): 

kL+ 1, 1 ) Ln/a, 
L~oo 

ko,N+l , Nrc/a. 
N---~ oo 

Eq. (a16) can be estimated as 

4 a 2 ( 1  1 )  
IE[ <~ + (Tii - t j i ) l / 2 ( rpq -  tpq) 1/2 

(b) Corrections to the result in (a) introduced by the use of the 
approximate coefficients cgl'~, defined in Eq. (32) 

(a17) 
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However, a practical estimate of the error should taken into account the use of the 
• ij ij • approximate coefficients Cgtm ~. In terms of the parameters e,,~. defined m Eq. (32), an 

error which takes into account these facts is defined as 

L N l r~ij* 6gPq 
"Olin n tO lm n 

e = ( i j l p q ) . - -  ~ ~, ~ ~ - E -  7"1, (a18) 
l=O n= l m = - I  lgln 

where (ijlpq),, is the bielectronic integral limiting the integration volume to the 
region inside the sphere of radius a, T~ is defined by 

V lmn 
Ta = ~.2 , 

/ = 0  n = l  m = - l  kln 
(a19) 

with 

G ijpq t.-,ij* pq pq ij* is* pq 
lmn - ~"~lmn t~lmn "~ Clmn 8"lmn "~- 131mn g.tmn. (a20) 

Using Eq. (a16), e satisfies: 

lel <. T1 + (Ti~ j + TiJ]l /2["FPq I -31 ~ 2 ~ T~'q) 1/2, 

where 

(a21) 

= 4n (kL+ 1, 1 + ko,N+ a) TU -- [ ~tm. [ , (a22) 
l = 0  n = l  m = - l  

L N l 
TiaJ = - 2 - 2 ('~ijij (a23) 4re ( k  L+l ,v t  + k o , u + l )  E E E Vlmn 

/ = 0  n = l  m = - l  

T1 and T~ j contain the quantities e[~, which are exponentially decreasing functions 
of a. In the following, it is shown that these sums can be bounded under suitable 
assumptions. On the other hand, T~ s cannot be made arbitrarily small by increas- 
ing a unless N and L are sufficiently large.. 

ijpq . 
In order to obtain a bound to T1 and T~ J which contain sums over G~m. It must 

be observed that: 

L N l [2_ ijpq I L N 1 

E E  E V'm.l  E E E 
/ = 0  n = l  m = - l  / = 0  n = l  m = - l  

-[- ClPmqn 13lmn -~ l~ lmn ~'lmn 
l = 0  n = l  m = - l  , = 0  n = l  m = - l  

Each term on the right-hand side of Eq. (a24) can be upperbounded using the 
Schwarz inequality: 

L N I 

Alton n lmn E E E  * 
/ = 0  n = l  m = - l  

~< E IE 1 E E E I a lmn l2  E E E IBlmn]2 " 
/ = 0  n = l  m = - I  / = 0  n = l  m = - l  

(a25) 

Since Cli~, stand for the original coefficients within the sphere they satisfy: 

L N l 

E Z  E ,.,J2 t.,lm n ~ T~j. 
1=0 n = l  m = - I  

(a26) 
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From Eqs. (a24), (a25) and (a26) it is concluded that in order to find proper bounds 
to T~ and T~ j it is necessary to investigate the behaviour of the sums: 

L N l 

Z Z ~ le[~,l 2, (a27) 
/ = 0  n = l  m = - l  

ij where elm. take the explicit expression: 

e~m. = c~t,~. _ Ct,.. = Bt . (2kt . /x)  ~/2 r 2 drjz(kt.r) dr2 Y~'m(f2)p~j(r). (a28) 
a 

Defining the function ~j fz,(t2) as 

ij r 2 f t . ( f2 )  = Bt . (2kt . /x )  1/z drjt(ktnr)pij(r) 
a 

= Bl. r 3/2 dr Jt+l/2(kt .r)  pij(r), (a29) 
a 

ij 
81m n satisfies: 

ij f f i j  elm, = t .(~) Y*m(~2) dO, (a30) 

ij ij i.e., ez,,, can be seen as the projection offz.(~2 ) on the spherical harmonic YZm(~). 
The following expression (for fixed l): 

l 

ij 2 (a31) lmn 
. l = - I  

ij is the projection of f t . (Q) on the subspace spanned by the set {Ylm, 
m = - 1 . . . . .  l) and consequently it satisfies: 

ij 2 = ij (a32) ~zm. ~< Ilft~J(f2)ll z If~J(O)12df2-f~..  
m=-- l  

This is a bound for the summation over m for each value of l, n. Thus it holds 
L N 1 L N 

~ ~ [~J.12~< ~ ~ Ft ~j. (a33) 
/ = 0  n = l  m = - l  / = 0  n = 0  

An upper bound to F ]  is obtainable from: 
ij ~-~ 2 Fl' ~ ~< 4re ]fin ( M)] , (a34) 

ij 
where O~t is such that [fl, (O)1 is maximum for t? = t2M. 

ij A general expression for a bound to Ifl, (t2M)[ can be obtained. In the region 
r > a all AOs can be considered to take small values and to be decreasing functions 
of r, thus allowing to write: 

r 3/2 pij(r, f2~) = ~ A~](f2M) 9~J(r, Q~), (a35) 

with #~J(r, K2M) positive decreasing functions ofr  for r > a. With this decomposition 
it holds 

i; ij "" 
Ift, (O)1 ~< ~ IA~J(t2M)I • g~J(r, QM)BtnJt+l/2(klnr) dr (a36) 

,u a 
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B~, is the normalization factor. The following property of Bessel functions de- 
scribed in Ref. [26] p. 595 is useful. Forf(r)  a positive decreasing function oft ,  there 
exists ~ e (a, s) such that 

] flf(r)J~+l/2(kr)dr = f(a) ff Jz+l/2(kr)dr + f(s) ; Jz+l/2(kr)dr . (a37) 

This property, when applied to the integrals in Eq. (a36) allows to write: 

=]Bl, gi}(a, f2M)J.[f~Jz~m/2(kt, r)dr , (a38) 

where it has been used that g~J(s, f2M)~ 0 as s ~ oe and that the function: 

I~(ul, uz) = J~(u) du (a39) 
1 

is finite for any value of ul, u2 t> 0. An upper bound to I~(ul, uz) can be set 
independent of ul, u2 and v: 

I Xl/2,1 

/MAX = J1/2 (x) dx, (a40) 
do 

where xl/z, 1 is the first root of J~/z(x). Consequently, 

f m Q M ) B l n J l +  l /2(kln r) dr g~i(r, <~ g~J(a, Ou)k~ l IMAx Bt. 

"" f2 ~ I k~ l/2 ~ g~J(a, MI MAX a l~- ,  (a41) 

where it has been used that 

[Bl, I = 121/2/(aJt+ 1/2 (kl, a))[ ~ v 1/z '~ln " (a42) 

Equations (a41), (a36), (a34) and (a32), together with the assumption that L ~ N, 
allow to obtain exponentially decreasing and convergent upper bounds for the 
T1 and T~ j sums. Even though it is not a simple matter to calculate such bounds, it 
is interesting to remark that they are expressed as finite sums and there is no need 
to compute any quantity involving values of l, n larger than L and N. 

It can be shown in a simple application that the sums involved in these 
calculations have a good rate of convergence. This can be done by assuming that 
pii(r, g2M) is an exponentially decreasing function of r, i.e., 

gij(r, OM) = Ar3/2 e-,r,  (a43) 

where A is a normalization factor. This functional dependence can be used to 
estimate the integral in Eq. (a36) in an alternative way. Assuming that n, l take large 
values and n _-__ l, the Bessel function in Eq. (a36) can be replaced by its asymptotic 



164 J.E. P~rez et al. 

expansion to carry out the integration, in order to analyze the dependence of the 
integral on the l, n indices: 

I~ j = . g~i(r, f~M) Bl, Jl+ 1/2 (kl~r) dr 

~ A r 3/2 e - ~  Bl~ cos (klnr -- q~l)(kl~r)- 1/2dr. (a44) 
d 

where ~b~ = (1 + 1)~/2. This expression is valid for large values of kz~. The integra- 
tion can be carried out explicitly: 

I~ j ~ A(e 2 + k ~ ) - l k g l / 2 e  - ~  [D~ cos(kl~a -- q~l) - Da sin(kz.a - ~bl)], (a45) 

with Dx = eta + (:¢2 _ k2n)/(o~2 q_ kl2) 

and D2 = kln[a + {2a/(ct 2 + k2.)}]. (a46) 

The values kz.a = x~. are the roots of Jz-1/E(kr). For fixed l and large n values it 
holds (I-25] p. 371): 

xt~ ~ ~bl-1 + (2n + 1)rt/2 (a47) 

and 

Icos(/ctna - qSi)l ~ 1 (a48) 

sin(kzna - 491) ~- O(1/ktn). (a49) 

Thus, the product Dz sin(k~,a - ~bl) remains finite as k~, goes to infinity. Conse- 
quently it is found that I~ j decrease as k~ z and thus the general term in FtiJ n in 
Eq. (a32) decreases as kg 4 for large values of kz,. Equation (a45) also shows 
explicitly the exponential decay of Fzi, ~ with increasing a. 

From the previous results the following conclusions can be drawn, The errors 
T1 and Ti i can be estimated for an initial choice of the values of N and L, and they 
can be made arbitrarily small by a proper choice of the parameter a. On the other 
hand, Ti j depends on the convergence properties of the sums involved in the 
calculations, i.e., it may be necessary to increase the values of N and L in order to 
make Ti j smaller than a desired threshold. The fact that the sums involved in 
T 1 and Ti j have a good rate of convergence suggests that their values are almost 
unaffected by this increase of N and L. 

(c) Convergence analysis in the case o f  ls  Slater-type orbitals 
The explicit expressions for the coefficients ¢g~Jmn corresponding to ls Slater-type 
orbitals defined in Eq. (36) allow to analyze in this specific case the important 
question of the rate of convergence of the sums involving the expansion coefficients. 
The coefficient which corresponds to two ls Slater orbitals centered on the same 
nucleus is: 

~ l m n  2 2 7 (e2 + k~,/4) (a50) 

where i stands for the ls orbital. The quantities appearing in all calculations are of 
the form 

N L l 

E 2  2 [cg[~,12. (aS1) 
n I m=-- l  



Expansion of atomic orbital products in terms of a complete function set 165 

Taking into account the relations in Eqs. (a42) ([25] p. 364), Eq. (a52) ([25] p. 371), 
and Eq. (a53) ([31] p. 1015): 

where rll is the first root of J;+ 1/2, the following bound can be established: 

where/~i represents the angular coordinates of Ri. From this last relation, it is 
easily shown that the asymptotic behavior of the resulting sum in n and I goes at 
least as kg 7 11/3. 

When the ls orbitals are centered on different nuclei, the following relation is 

where C is a constant, P is assumed to be positive, z is defined as in Eq. (36) and the 
following relations were used: 

With these relations the following bound can be set to the integral in Eq. (a55): 

As in the previous case, it can be seen from Eq. (a55) that the asymptotic behavior is 
at least like kg 5 11/3. 
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Appendix III 

In this appendix the way in which the integration over k is carried out in Eq. (47) is 
shown. The A,l,,(k) functions defined in Eq. (48) take the explicit expression: 

= f d V  exp( - ik 'r)  U*,,(r) = 4n(n/2)l/2i I Y*,,(~) Bt,. A,tm(k ) 

x drrJl+l/2(kl ,  r ) Jl+l/2(kr). (a60) 
0 

The integration over r can be carried out explicitly ([25] p. 484), Eq. 11.3.29): 

, ^ aBln  
A,a,,,(k) = 4~(n/2) 1/2 i l Yim(k) (k i ~ ~,,) 

× [kJ,,+l(ka)J,,(k~,,a) - kl,,J,,(ka)J..,+l(kl,,a)] (a61) 

where v = I + 1/2. When the expansion Eq. (48) is inserted in Eq. (47) the bielec- 
tronic integral is expressed: 

t" d3k 
B - (1/2n2) ~ Cql C'2 | ~ 5 -  A*l(k)Aq~(k). (a62) 

q 1, q2 3 

The integration over k is carried out inserting Eq. (a61) and using the recurrence 
relations Eqs. (14) and (15) to obtain 

f d3k A:l(t)aq2(k) = k 2 

f ~  dk k .12_ 1 (ka) 
x o (k 2 ~k~-~k 5 ~  k22) ' (a63) 

where ki stand for kt,,,,. 
In order to integrate over k the following representations of the Bessel functions 

are used ([31] p. 671 and p. 952): 

I~12 
j 2  1/2 (ka) = (2/~) dO J(2l- 1) (2ka cos 0), (a64) 

3o 

;o J(21-1)(x) = (l/n) do sin [ ( 2 / -  1)q~] sin(x sin q~). (a65) 

Thus, the integral in the right-hand side of Eq. (a63) assumes the form 

~r/2 dO 1)~o3 Y = (2/zc 2) dq~ sin [ (2l - dk (a66) 
30 o ( k2 - k2)(k 2 - k2) ' 

where s = 2a cos 0 sin ~o (s > 0). 
The integration over k can now be evaluated using standard complex tech- 

niques and yields 

f,o: [ Y = (2/TC 2) d0 de  sin [ ( 2 / -  1) ~p]. (1/2) kl + k2 k2 : ~ " 
30 

(a67) 
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In order to integrate over 0 and ~o, the case kl ~ k2 is first considered. In this case: 

Y = Y1 + Y2, with (a68) 

(-1)J I'v2 f~ = dO d~0 sin [ ( 2 / -  1)~0] cos(2kja sin ¢p cos 0) (a69) 
j o  o 

The integration over 0 yields ([31] p. 402): 

(- 1)J fi' - rc(~2 -_S ~c2) dq) sin [ ( 2 l -  1)¢p] Jo(2kja sin ~o), (a70) 

which finally yields ([31] p. 739): 

Yj = (re/2)sin[(/-  1/2)zr] J_e_a/2)(kja)Jtt_l/z)(kja ) = 0 (a71) 

by virtue of Eq. (16). 
In the case k2 = kl Y becomes 

Y =  - (a/rckl) d0 de  s i n [ ( 2 / -  1)¢] 
,1o o 

x sin ¢ cos 0 sin (2kl a sin ¢ cos 0). (a72) 

The integration over 0 can be carried out as indicated in Ref. [31] p. 402, Eq. (14) 
for the case of n = 0 and yields 

fo a de  sin [ ( 2 l -  1)¢] s i n C J l ( 2 k l a  sin ¢). (a73) Y = 2kl 

On using that 

sin [(2l - 1)¢] sin ¢ = ½ {cos [2(l - 1)¢] - cos(2l¢)} (a74) 

the results of Ref. [31] p. 739, Eq. 9 and [26] p. 46, Eq. 7 can be used to obtain: 

a 2 s in [ ( /+  1/2)n] 1 
Y = ~ n cos (tn) n kl a = 2k z . (a75) 

Inserting this last relation and using the explicit expression of the normalization 
factors Bl,, Eq. (a63) yields 

f dak , - ~ -  Aql (k) Aq2 (k) = 8re s 6ql qJk 2 . (a76) 

When this result is inserted in Eq. (a62), Eq. (28) is reobtained. 
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